

Publication Date: 05/07/2024

Methodology: M001

Version: V1.1 Contact: Ecosystem Restoration Standard 25 Rue de Frémicourt 75015 Paris, FRANCE info@ers.org

GUIDELINES

Reference Ecosystem

SUMMARY

This document provides Developers with guidelines for selecting an appropriate Reference Ecosystem for ERS Project Certification and outlines the methodology for assessing the ecosystem's condition.ERS's approach to assessing the state of the Reference Ecosystem is based on *International Principles and Standards for the Practice of Ecological Restoration*, Gann, G. D. et al. (2019).

F

Table of *Contents*

Table of Contents	1
Reference Ecosystem Selection	2
DEFINITION	2
GUIDING PRINCIPLES	3
Selection of the Reference Site	3
METHODOLOGY	4

Reference Ecosystem Selection

DEFINITION

ERS adheres to the definition of a Reference Ecosystem as outlined in the International Principles and Standards for the Practice of Ecological Restoration¹: A Reference Ecosystem typically represents a non-degraded version of the ecosystem, including its flora, fauna, other biota, abiotic elements, functions, processes, and successional states. The Reference Ecosystem reflects what might have existed at the Restoration Site if degradation had not occurred, adjusted for current or anticipated environmental conditions.

The Reference Ecosystem is materialised by a Reference Site, defined as a currently intact site with attributes and a successional phase similar to the restoration project site².

The Reference Ecosystem and Reference Site(s) are used to create the Reference Model, which depicts the expected condition of the Restoration Site if degradation had not occurred (concerning flora, fauna and other biota, abiotic elements, functions, processes, and successional states). This condition is not historic but reflects background and predicted changes in environmental conditions.

ERS's quantification methodology and ecological recovery planning and assessment under M001 are based on a reference model coupled with local, traditional, and scientific knowledge.

¹ Gann, G. D., et al. (2019). International Principles and Standards for the Practice of Ecological Restoration. Available at: <u>URL</u>

² Gann, G. D., et al. (2019). International Principles and Standards for the Practice of Ecological Restoration. Available at: <u>URL</u>

Selection of the Reference Site

- 1. The Reference Site must:
 - 1.1. Be accessible for the Developer to collect reference data to inform the baseline and, when necessary, be validated during Validation.
 - 1.2. Have not undergone significant anthropogenic disturbance in the last ten years. ERS must monitor this using satellite imagery to assess land cover degradation.
- 2. The Reference Site must present the following **six key attributes**³:
 - 2.1. **Absence of threats:** direct degradation drivers impacting the ecosystem's health, such as over-utilisation, contamination, and invasive species, are minimal or effectively absent.
 - 2.2. **Physical conditions:** the properties required to sustain the ecosystem, such as soils, water, and topography, are present, and their physical and chemical conditions are appropriate.
 - 2.3. **Species composition:** the array and relative proportions of organisms, native species characteristic of the appropriate ecosystem are present, whereas invasive species are minimal or effectively absent.
 - 2.4. **Structural diversity:** the physical organisation of living and non-living elements (e.g. forest layers and food webs), the appropriate diversity of key structural components, including demographic stages, faunal trophic levels, vegetation strata, and spatial diversity, are present.
 - 2.5. **Ecosystem function:** when assessing the roles and processes arising from interactions among living and non-living elements, the appropriate levels of growth and productivity, nutrient cycling, decomposition, habitat, species interactions, and types and disturbance rates are present.

³ The Reference Ecosystem guiding principles, including the six key attributes, the scoring systems, and the Recovery Wheel were drawn from Gann, G. D., et al. (2019). International Principles and Standards for the Practice of Ecological Restoration and adapted to ERS's needs by ERS.

- 2.6. **External changes:** the flows between sites and the surrounding environments of the ecosystem are appropriately integrated and connected to allow for abiotic and biotic flows and exchanges.
- 3. These attributes must be used to characterise the Reference Site, evaluate baseline conditions on the Reference Site(s), and provide key indicators for the Project's desired restoration outcomes.

METHODOLOGY

The <u>Field Assessment</u> must be completed at the Reference Site(s) to determine the Reference model. The assessment is performed using ERS's App.

Following the Field Assessment, an ERS Certification Agent must transfer the data imputed by the Developer into the <u>Ecological Recovery Assessment Tool</u>, resulting in the Recovery Wheel.

The Recovery Wheel is the assessment's visualisation tool. It helps track the progress of restoration efforts by comparing them to the Reference Site.

Score/ Attribute	One	Two	Three	Four	Five
Absence of threats	Some direct degradation causes (e.g. over-harvesting, overgrazing, active contamination) are absent, but others remain high in number and extent.	Direct degradation causes (including, e.g., sources of invasive species) are intermediate in number and extent.	The number of direct degradation causes is low overall, but some may remain intermediate in extent.	Direct degradation causes, both external and in the project zone, are low in number and extent.	Threats from direct degradation causes are minimal or absent.

Below are the values and conditions adopted by ERS to rate all attributes.

REFERENCE ECOSYSTEM GUIDELINES 5

	_
ì	
-	

					over time.
Species composition	Very high levels of non-native invasive or undesirable species. Some colonising native species are present (~2% if compared with the reference ecosystem).	Moderate levels of non-native invasive or undesirable species. A small amount of characteristic native species are present (~10% if compared with the reference ecosystem).	A subgroup of key native species is present. (up to 40% compared with the reference ecosystem)	The site has a significant diversity of characteristic species (up to 60% compared with the reference ecosystem), representing a wide diversity of species groups.	There is a high diversity of characteristic species across the site, with high similarity to the reference ecosystem (>80% compared with the reference ecosystem). Potential for colonisation of more species
Physical conditions	Most physical properties of the site's substrates and hydrology (e.g. soil structure, nutrients, and hydrological conditions) differ greatly from those of the reference ecosystem.	The physical and chemical properties of substrates and hydrology remain at low similarity levels compared to the reference ecosystem but are capable of supporting some reference animal and plant life.	The physical and chemical properties of substrates and hydrology are intermediately similar to those of the reference ecosystem and capable of supporting the growth of many characteristic native animal and plant life.	The physical and chemical conditions of substrates and hydrology are highly similar to the reference ecosystem and suitable for the continuous growth of characteristic native animal and plant life.	The physical and chemical conditions of substrates and hydrology are highly similar to those of the reference ecosystem, and there is evidence that they can indefinitely sustain all characteristic species and processes.

REFERENCE ECOSYSTEM GUIDELINES 6

	reference	reference	ecosystem are	ecosystem are	ecosystem are
	ecosystem is	ecosystem is	present with	present, and	present with
	present, but the	present, and	intermediate	there is	high similarity
	spatial	there is some	similarity of	substantial	of spatial
	arrangement and	similarity in	spatial	similarity in	arrangement
	trophic	spatial	arrangement	spatial	and trophic
	complexity differ	arrangement	and trophic	arrangement	complexity.
	greatly from	and trophic	complexity	and trophic	Further
	those of the	complexity	relative to the	complexity	complexity and
	reference	relative to the	reference	relative to the	spatial
	ecosystem.	reference	ecosystem.	reference	arrangement
		ecosystem.		ecosystem.	can
					self-organise to
					highly resemble
					the reference
					ecosystem.
Ecosystem	Processes and	Compared to	Compared to	Compared to	All functions
function	functions are at a	the reference	the reference	the reference	and processes
	foundational	ecosystem, the	ecosystem,	ecosystem,	are on a
	stage only, highly	number and	intermediate	substantial	trajectory
	different from the	level of physical	numbers and	levels of	towards the
	reference	and biological	levels of	physical and	reference
	ecosystem.	processes and	physical and	biological	ecosystem
	,	functions	biological	processes and	levels and
		(including	processes and	functions are	showing
		growth,	functions	present.	evidence of
		decomposition,	(including		being
		and soil	reproduction		sustained.
		processes) are	and dispersal)		
		low.	are present.		
External	Positive	Positive	Positive	Positive	There is
exchanges	exchanges and	exchanges with	exchanges exist	exchanges	evidence that
	flows with the	the surrounding	between the	with the	exchanges with
	surrounding	environment	site and	surrounding	the surrounding
	environment	exist for a few	surrounding	environment	environment
	(e.g., species,	characteristic	environment for	are in place for	are highly

F

genes, water, fire)	species and	intermediate	most	similar to the
exist for very few	processes.	levels of	characteristic	reference
species and		characteristic	species and	ecosystem for
processes.		species and	processes and	all species and
		processes.	are likely to be	processes and
			sustained.	are likely to be
				sustained.

Ecosystem Restoration Standard

info@ers.org | www.ers.org