

Publication Date: 01/03/2022

Revision Date: 01/12/2023

Methodology: M000

Version: V0.9 **Contact:** Ecosystem Restoration Standard 25 Rue de Frémicourt 75015 Paris, FRANCE info@ers.org

METHODOLOGY

Methodology for Reforestation

SUMMARY

This document details the methodology used for certifying Terrestrial Forest Restoration Projects. It covers both the principles and the methods through which each of ERS's three pillars are assessed. In addition, it describes how the Project risks are assessed.

Table of *Content*

Table of Content	1
ERS's Methodology	2
DISCLAIMER	2
Project Selection	3
PRINCIPLES	3
1. Developer Requirements	3
2. Project Requirements	3
3. Carbon Offset Requirements	4
Project Certification	5
1. Developer Requirements	5
2. Project Selection Requirements	5
3. Carbon Offset Requirements	5
Monitoring & Verification	7
SATELLITE MONITORING	7
FOREST COVER MONITORING	7
ANNUAL REPORTING	7
Project Guarantee	8
Appendices	9
APPENDIX 1: Quantification Methodology for Reforestation	9
APPENDIX 2: Risk Assessment Matrix For Carbon Criteria	9
APPENDIX 3: RISK ASSESSMENT MATRIX FOR EXTERNAL FACTORS	12

ERS's *Methodology*

DISCLAIMER

ERS is currently putting together a scientific committee to give feedback on the selection criteria, review the baseline methodology and help improve the risk matrix modelling to holistically study project guarantees and insurance (see "<u>Project</u> <u>Guarantee</u>" below).

A V1 methodology should therefore be released by end of 2023. Until then, ERS selects projects that will allow the piloting and fine tuning of its GHG emission removal quantification.

PRINCIPLES

1. Developer Requirements

Developers should historically have:

- 1.1. Low mortality rates on their reforestation projects;
- 1.2. Reported and quantified community benefits;
- 1.3. Be financially stable;
- 1.4. Worked with local communities, respecting diverse cultural backgrounds;
- 1.5. Planted local species.

2. Project Requirements

Projects must not only support local communities but also positively impact biodiversity and endangered species, complying with the following criteria:

2.1. **Right flora.**

- 2.1.1. **Richness.** Planting density must be appropriate for the planting location.
- 2.1.2. **Evenness.** Project developers must define and justify crop plans or intercropping strategies based on local conditions.
- 2.1.3. **Diversity.** A minimum of two species must be planted on each project (native species, preferably endemic, **non** invasive). Non-native species can only be planted if they provide alternative livelihoods to communities, in which case they need to have an environmental assessment to prove that they are not invasive.

- 2.2. **Right community.** In order to favour community ownership of projects, project developers must ensure:
 - 2.2.1. **Local employment.** Planting and monitoring teams should be trained and hired from local communities surrounding the project area.
 - 2.2.2. **Fair wages.** Planter salaries should meet living wage standards in the local context.
 - 2.2.3. **Women empowerment.** Planting teams should consist of at least 50% women, while respecting cultural practices.
- 2.3. **Right place.** Projects must improve:
 - 2.3.1. **Livelihoods.** Projects should improve economic development for local communities.
 - 2.3.2. **Biodiversity.** Projects should strive to protect IUCN RED List species.
 - 2.3.3. **Connectivity.** Projects should aim to build buffer zones and corridors for existing areas are preferred.

3. Carbon Offset Requirements

Projects must meet all of the following criteria:

- 3.1. **Additionality.** The project must result in GHG emission removals that would not occur otherwise.
- 3.2. **Durability.** The project must ensure emissions are kept out of the atmosphere for the entire duration of the project and preferably beyond.
- 3.3. **Leakage.** The project must implement and monitor a leakage belt around the project area.
- 3.4. **Double counting.** A unit must belong to a single owner at a given time and only be retired once.

Project Certification

1. Developer Requirements

A developer background check is performed by ERS via:

- 1.1. Analysis of the developer's annual impact and financial reports for the past 3 years, and
- 1.2. Reference calls with existing financers and past partners to ensure their legitimacy and trustworthiness.

2. Project Selection Requirements

2.1. The developer must submit through the ERS app geolocalized and timestamped baseline photos of the sites before planting work. ERS uses those pictures to identify tree species and related biodiversity.

3. Carbon Offset Requirements

- 3.1. **Additionality.** ERS measures project carbon baselines before restoration begins and estimates the carbon potential over the lifetime of the project to respect this principle. Refer to <u>Appendix 1</u> for more information on the calculations.
- 3.2. **Durability.** ERS monitors forest cover change to ensure the project's integrity is maintained over its lifetime.
 - 3.2.1. The duration of the monitoring period is determined by the time taken for all planted trees to reach maturity.
- 3.3. Leakage. ERS monitors annually forest cover change in the leakage belt.
- 3.4. **Double counting.** All projects are recorded in the <u>ERS Registry</u>.

- 3.5. **Risk.** Risks that might impact the project's ability to absorb carbon in the long term are identified (Refer to <u>Appendix 2</u> and <u>3</u> for more details).
 - 3.5.1. Risks might be mitigated or compensated (Refer to "<u>Project</u> <u>Guarantee</u>" for more details).
 - 3.5.2. The risk assessment also analyses the likelihood of the project survival based on geopolitical, climate change, socioeconomic, land ownership and management structure factors in each area.

 \heartsuit All gathered information on the developer and its project is compiled into PDD is issued by ERS and published on the ERS Registry.

Monitoring & Verification

SATELLITE MONITORING

- 1. ERS monitors certified projects annually, using cutting-edge remote sensing technology, backed by the European Space Agency.
- 2. Changes in forest and shrub cover is analysed by following the evolution of the canopy cover.

FOREST COVER MONITORING

Using a combination of Sentinel-1 and Sentinel-2 satellite images, ERS developed a model to assess forest cover change, gain & loss. In both cases, this model allows ERS to precisely assess how many carbon credits are lost and must be recovered through the Buffer Pool in case of reversal. Refer to Quantification Methodology for Reforestation for more details.

ANNUAL REPORTING

- 1. Project developers must submit an annual report containing:
 - 1.1. the seedlings survival rate until year four of the Project.
 - 1.2. Biodiversity & livelihoods improvements.
- 2. Annual reports are publicly disclosed in the <u>ERS Registry</u>.

 \mathbb{S} Starting from year four onwards, annual forest cover monitoring replaces the seedling survival rate.

Project Guarantee

- 1. To insure against any potential losses, ERS conducts a risk assessment for each project and calculates contribution to a buffer pool accordingly.
- 2. ERS monitors forest cover to verify the validity of credits over the lifespan of the project and replace any credit which fails by a credit from the buffer pool.
- 3. The Risk Assessment matrix measures the probability of the project being undisturbed over its lifetime and efficiently absorbing carbon and protecting wildlife.
 - 3.1. ERS evaluates geopolitical stability, socioeconomic situation, vulnerability to climate change, as well as additionality, leakage and project durability.
 - 3.2. Each criterion is evaluated on a scale from 1 to 5.

The role of the buffer pool is solely to back projects against losses. Credits inside the buffer pool cannot be sold under any circumstances.

Appendices

APPENDIX 1: Quantification Methodology for Reforestation

Refer to the <u>Quantification Methodology for Reforestation</u> for more details on how ERS quantifies GHG emission removals.

APPENDIX 2: Risk Assessment Matrix For Carbon Criteria

	1	2	3	4	5
Additionality	The	There is	The project	Remote	ERS
Ensure the	additionality	some	should live	sensing	technologies
project is	claim is	additionality	up to their	models and	have proven
generating a	completely	to the project	additionality	on-the-grou	that the
GHG	erroneous. It	but it is	commitment	nd data	project is
emission	was likely	unsure how	s in the	regarding	absorbing
reduction or	based on	much. The	long-term	biomass	even more
removal that	false data or	data on	but more	absorption	carbon than
would not	no data at	which the	accurate	and	originally
occur	all. No	analysis was	data and	co-benefits	planned for.
otherwise.	remote	based is	better	validated	
	sensing data	likely to be	remote	with	
	can be used	flawed and	sensing	certainty the	
	to monitor	not a perfect	estimates	fact that the	
	the evolution	representatio	should be	project is	
	of the	n of reality.	used to	additional.	
	project.		validate it.		

	1				
Durability	Emissions will	There is not	Without	Low	Low
emissions	out of the	to quarantee	events and	allows saving	allows saving
are kent out	atmosphere	nermanence	based on the	with	with
of the	due to a	which	available	confidence	confidence
atmosphere		requires	data the	that the	that the
for the entire	managed	assuming	project is	project will	project will
duration of	project with	the worst	likely to	ghsorb	ghsorb
the project	g vorv high		absorb	omissions	
the project.	likelihood of		agrhan	ernissions	ernissions
	fire or	boing	conding to	beyond the	
		Deing			multiple
	delorestation	conservative.	for the	duration. II	generations.
	TOP	GHG	for the	the project is	If the project
	agricultural	emission	entirety of	negatively	is negatively
	purposes.	removals are	the project.	impacted, a	impacted, a
	No buffer	unlikely to be		buffer zone is	buffer zone is
	zone.	maintained		attributed to	attributed to
		for the		each ton of	each ton of
		duration of		carbon to	carbon to
		the project		compensate	compensate
		and beyond.		for potential	for potential
		No buffer		loss of	loss of
		zone.		emission	emission
				reduction.	reduction.
Leakage	The area	Deforestation	Deforestation	Trees are	Reforestation
Ensure that	protected for	activities are	is not	planted	efforts were
emissions	reforestation	not	displaced	efficiently	so promising
avoided	is mostly	displaced to	and	and death	and
through the	inefficient	another	reforestation	rates are low	beneficial
projects are	(i.e. carbon is	location but	is conducted	which allows	that they
not	not	reforestation	as planned.	the project to	sparked new
displaced,	absorbed)	efforts are	Emissions	expand	initiatives in
nor occur	AND	not optimal	are not	beyond its	the region or
elsewhere.	deforestation	and	displaced as	original	elsewhere. If
No buffer	activities are	agricultural	a	delimitations.	leakage
zone.	displaced.	projects	consequenc	lf leakage	occurs, a
	i i i i i i i i i i i i i i i i i i i	1		-	1

	remain in	e and	occurs, a	buffer zone
	place for	carbon is	buffer zone	will account
	subsistence.	taken out of	will account	for each lost
		the	for each lost	ton of
		atmosphere.	ton of	carbon
			carbon	emission
			emission	reduction
			reduction	

APPENDIX 3: RISK ASSESSMENT MATRIX FOR EXTERNAL FACTORS

F

	1	2	3	4	5
Geopolitical	Very poor	Poor	Decent	Good	Excellent
Stability	governance.	governance.	governance.	governanc	governance.
Evaluate the	А	A significant	Low amount	e. Peace,	Peace,
risk associated	considerable	amount of	of conflicts.	justice and	justice and
with the level of	amount of	conflicts. No	Governance	strong	strong
governance	corruption,	Government	intervention	institutions.	institutions.
according to	ethnic	plan to	(subsidised	Low	Very little to
previous	conflicts and	address	health	poverty.	no poverty.
conflicts and	wars. Extreme	sustainabilit	coverage,	Governanc	Governance
government	poverty and	y efforts.	public	е	intervention
intervention in	inequalities.		education	interventio	(subsidised
the location of			etc) and	n	and
the project and			government	(subsidised	universal
the probability			plan to	and	health
of the project			address	universal	coverage,
failing.			sustainability	health	quality
			efforts.	coverage,	public
				quality	schools,
				public	decent work
				schools,	and
				Decent	economic
				work and	growth,
				economic	gender
				growth,	equality,
				Reduced	reduced
				inequalities	inequalities,
				etc) and	affordable
				governmen	and clean
				t plan to	energy, and
				address	government
					plan to

				sustainabili ty efforts.	address sustainabilit y efforts, and have met their previous statements.
Climate change vulnerability Evaluate the risk associated with climate change according to the estimated impact of future temperature increases and the ability of trees and vegetation to adapt to such changes.	Extremely vulnerable territory to climate change. Estimates predict climate change will heavily affect the success of the project, resulting in >10% of carbon sequestered from the project	Very vulnerable territory to climate change. Estimates predict climate change will affect the success of the project, resulting in > 40 % of carbon sequestered from the project	Vulnerable territory to climate change. Estimates predict climate change will affect the success of the project, resulting in >50 % of carbon sequestered from the project	Relatively resilient to climate change. The project is likely to adapt to an increase in temperatur e in the next decades. Estimates predict climate change will not affect the success of the project, resulting in >80% carbon sequestere	Very resilient to climate change. The project will surely adapt to an increase in temperature in the next decades. Estimates predict climate change will not affect the success of the project, resulting in >95 % carbon sequestered from the project.
Socioeconomi c factors	Local communities	Local communitie	Local communities	project. Local communiti	Local communitie

_	

Evaluate the risk associated with socio-economi c factors according to the ability of local communities to rely on non-forest resources to live decently.	are all smallholder farmers and solely reliant on intensive crop farming, detrimental to the soil but essential to their livelihoods. There is no other option for income in the area.	s are mostly smallholder farmers and heavily reliant on crop farming. They typically have just enough to send the next generation to school and get out of the cycle but nothing else.	have larger farming plots and make a fair living out of their crop yields. There are other options for income but this is still the best option and is a choice.	es have diverse sources of economic income and do not need to rely on farming for their livelihood.	s are completely independen t of farming and can engage in reforestatio n projects as leisure.
Land ownership & management Evaluate the risk associated with land ownership and management by assessing the success/failure of previous projects.	No record of ownership or managemen t. The land has been abandoned or destroyed by anthropogeni c activities. The land is considered unproductive and unexploitable	Previous projects were poorly managed, leading to leakage and/or deforestatio n.	Previous projects were fairly well handled, leading to little leakage and/or deforestation	Previous projects well managed	Fully managed and owned by local communitie s with a sustainable manageme nt plan.